Pages

Sep 26, 2009

Isotope

isotope , in chemistry and physics, one of two or more atoms having the same atomic number but differing in atomic weight and mass number. The concept of isotope was introduced by F. Soddy in explaining aspects of radioactivity; the first stable isotope (of neon) was discovered by J. J. Thomson. The nuclei of isotopes contain identical numbers of protons, equal to the atomic number of the atom, and thus represent the same chemical element, but do not have the same number of neutrons. Thus isotopes of a given element have identical chemical properties but slightly different physical properties and very different half-lives, if they are radioactive (see half-life ). For most elements, both stable and radioactive isotopes are known. Radioactive isotopes of many common elements, such as carbon and phosphorus, are used as tracers in medical, biological, and industrial research. Their

isotope , in chemistry and physics, one of two or more atoms having the same atomic number but differing in atomic weight and mass number. The concept of isotope was introduced by F. Soddy in explaining aspects of radioactivity; the first stable isotope (of neon) was discovered by J. J. Thomson. The nuclei of isotopes contain identical numbers of protons, equal to the atomic number of the atom, and thus represent the same chemical element, but do not have the same number of neutrons. Thus isotopes of a given element have identical chemical properties but slightly different physical properties and very different half-lives, if they are radioactive (see half-life ). For most elements, both stable and radioactive isotopes are known. Radioactive isotopes of many common elements, such as carbon and phosphorus, are used as tracers in medical, biological, and industrial research. Their radioactive nature makes it possible to follow the substances in their paths through a plant or animal body and through many chemical and mechanical processes; thus a more exact knowledge of the processes under investigation can be obtained. The very slow and regular transmutations of certain radioactive substances, notably carbon-14, make them useful as "nuclear clocks" for dating archaeological and geological samples. By taking advantage of the slight differences in their physical properties, the isotopes may be separated. The mass spectrograph uses the slight difference in mass to separate different isotopes of the same element. Depending on their nuclear properties, the isotopes thus separated have important applications in nuclear energy. For example, the highly fissionable isotope uranium-235 must be separated from the more plentiful isotope uranium-238 before it can be used in a nuclear reactor or atomic bomb .

The Columbia Encyclopedia, Sixth Edition | 2008 | The Columbia Encyclopedia, Sixth Edition. Copyright 2008 Columbia University Press

No comments:

Post a Comment